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E3SM Multiscale Modeling Framework (E3SM-MMF)

• Energy Exascale Earth System Model: U.S. DOE hi-res climate model

– Collection of atmosphere, ocean, land surface, sea ice, and land ice

• Multi-scale Modeling Framework (E3SM-MMF)

– Embed hi-res (1km) Cloud Resolving Model (CRM) at each global model grid point

– Explicit simulate moist convection on reduced domain

– Improves upon heuristic “parameterization” for moist convection

– 2 million lines of mostly Fortran 77, 90, 2003+

– Threading is poorly exposed

– Heavily reliant on Fortran classes, pointers, TBPs

• >90% of runtime concentrated in CRM code

– Only 10-20K lines of code

– Natural target for acceleration

E3SM
CRM
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Approach to AMD Hardware and Portability

• We chose to use C++ portability over Fortran + Directives

1. C++ can conveniently describe any code as an object (Lambdas)
– We can then launch this code on CUDA, HIP, SYCL, OpenMP, etc. ourselves

– Fortran cannot do this at this time

2. C is typically the first implementation a vendor develops
– This is critical for efforts that must work on “day 1” for new architectures

3. C is the more reliable implementation
– Fortran is less popular overall: fewer dedicated developers

– C++ classes/templates better defined by standards than modern Fortran constructs

• However: Porting from Fortran to C++ is time consuming
– Also, significant effort is needed to keep C++ user-level code readable

– C++ Lambda capture semantics can be confusing to domain scientists

– Have to put guardrails on C++ experts (reliance on std::, virtual inheritance, etc.)
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What is Portable C++?

• A C++ library, not a separate language or a language extension

• Based on the “kernel” paradigm (e.g., CUDA, HIP, SYCL, …):

– A kernel performs work on a single thread

– Let the launcher know how many threads to launch

– Requires no more work or information than you’re already used to providing

Kernel is the loop 
body

Loops define the 
threading
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The Core of Portable C++

Threading

Kernel
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The Core of Portable C++

• C++ can pass code as an object

• C++ “lambdas” convert code into a class object for you

• You can then pass the code to whatever backend you want

– “parallel_for” can launch with CUDA, HIP, OpenMP, OpenMP 4.5+, SYCL, etc.

• Just as flexible and generic as directives
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Yet Another Kernel Launcher (YAKL)

• C++ Performance Portability Library for Fortran, simplicity, & readability
– https://github.com/mrnorman/YAKL

• Syntax patterned after Kokkos & interoperates easily with Kokkos

• Focus on simplicity
– Only one level of parallelism

• Two levels of parallelism: already making statements about hardware
– Only two memory spaces: host and device

• Allows Fortran-like behavior in multi-dimensional arrays
– One-based indexing, column-major index ordering, basic slicing
– Limited Fortran intrinsic library (size, shape, maxval, minloc, sum, etc.)

• Interacts with Fortran 
– Wrap existing Fortran allocations in YAKL Fortran-like Arrays
– Pool allocator with CUDA Managed Memory hooks and Fortran hooks
– Enables an incremental porting path with relatively little code change

• Convenient NetCDF, FFT, tridiagonal utilities for YAKL Arrays

https://github.com/mrnorman/YAKL
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YAKL Fortran-Like Multi-Dimensional Arrays

Fortran code: Finite-
Volume update from fluxes

Equivalent Portable C++
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YAKL Fortran-Like Multi-Dimensional Arrays

• YAKL Arrays inherently behave like Fortran assumed-shape arrays

– They carry all metadata with them:

• In practice, you would want to tile this loop
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YAKL Reduction & Limited Fortran Intrinsics Library

• Computing the maximum stable time step for Shallow Water

(Portable C++)
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Future Plans for YAKL

• YAKL currently works on CPU (serial), Nvidia GPUs, and AMD GPUs

• YAKL works on Intel GPUs with OpenMP Offload backend

– Except for atomic min and max instructions (waiting on OpenMP 5.1 implementations)

• SYCL backend (Intel) is waiting on “is_memcpyable” implementation

• Coming soon to a YAKL near you:

– CPU threading (OpenMP first, then pthreads for more efficiency if needed)

– An approach to cache blocking and SIMD vectorizations

• Long term plan: create a version of YAKL that wraps Kokkos for as many 

components as possible



1313 Performance Portable C++ for Scientists and Engineers

Algorithmic Advances for GPU Hardware

• Important to consider algorithms better suited for GPUs

• Arithmetically intense algorithms perform well on all architectures

• Increase computations while decreasing data movement

• E3SM-MMF Algorithmic Improvement Examples:

– “A high-order WENO-limited finite-volume algorithm for atmospheric 
flow using the ADER-differential transform time discretization”
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3989

– “A Holistic Algorithmic Approach to Improving Accuracy, Robustness, 
and Computational Efficiency for Atmospheric Dynamics”
https://epubs.siam.org/doi/abs/10.1137/19M128435X

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3989
https://epubs.siam.org/doi/abs/10.1137/19M128435X
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Algorithmic Advances for GPU Hardware: High-Order

3rd 5th

7th 9th

• Splitting supercell test case

– Cartesian grid

– High CAPE, initial thermal

– Splits into two cells

– Doesn’t use added 
viscosity from test case

• AWFL + P3 microphysics

• 20 second physics time step

– Dycore sub-cycled

• 5km vertical velocity after
2 hrs plotted on right
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Algorithmic Advances for GPU Hardware: WENO Limiting

Without WENO limiting

With WENO limiting
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New Algorithm Increases Arithmetic Intensity

• Reconstruct variation from stencil

• Apply WENO limiting

• Compute high-order ADER time-average

• Compute upwind fluxes

• Update the cell average from fluxes

• Vast majority of computations use only a small stencil of data from DRAM

– Significant compute intensity

– Time stepping happens in the same loop as reconstruction / limiting

• Most expensive kernels:   80% peak flop/s on V100;  “Quite good” on MI-60

• Currently working on MI-100 results
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Further Resources & Questions

• YAKL Documentation: https://github.com/mrnorman/YAKL

• miniWeather parallel programming training app: 

https://github.com/mrnorman/miniWeather

• Readable C++: https://tinyurl.com/readable-cplusplus

• C++ Portability for Directives Folks: https://tinyurl.com/cplusplus-portability

• Other (more functional) C++ Portability Frameworks:

– Kokkos: https://github.com/kokkos/kokkos/

– RAJA: https://github.com/LLNL/RAJA

• UMPIRE: https://github.com/LLNL/Umpire

– SYCL: https://github.com/KhronosGroup/SYCL-Docs

https://github.com/mrnorman/YAKL
https://github.com/mrnorman/miniWeather
https://tinyurl.com/readable-cplusplus
https://tinyurl.com/cplusplus-portability
https://github.com/kokkos/kokkos/
https://github.com/LLNL/RAJA
https://github.com/LLNL/Umpire
https://github.com/KhronosGroup/SYCL-Docs
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Challenges with Portable C++

• Vectorization

– C++ has less information than Fortran

– C++ pointers need “restrict” keyword to allow the compiler to optimize more

• Staying away from non-portable C++ features

– Most of the standard template library (“std::”) is either invalid or non-portable for GPUs

– Virtual functions in class inheritance is difficult on GPUs

• Unified shared memory helps with “std::” , but…

– Unified memory often performs poorly

– Unified memory isn’t portable to all compilers and hardware

• C++ Lambdas behave strangely

– They only “capture” needed data automatically if it’s in the local scope

– Global scope and class data are not captured automatically (more on this later)

• Portable C++ requires a rewrite of Fortran

– However, YAKL significantly reduces this burden by allowing Fortran-like behavior
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YAKL Scalar Live-Out

• Scalars written to in a device kernel and read from outside the kernel

– Scalars are normally thread-private; here they must be allocated on the device

– “Scalar Live-Out” is most common in error-checking routines
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YAKL Scalar Live-Out

Fortran

C++ Portability
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YAKL Pool Allocator (Gator)

• The YAKL “pool alligator” (speech-to-text error)

• Allows cheap frequent allocations & free’s

– Optimized for “stack-like” allocation patterns

– Most Fortran apps allocate in a stack-like fashion

– Little to no segmentation and wasted memory

– Does not behave well for random allocation

patterns

• Fortran hooks for up to 7-D arrays

• Allows CUDA & HIP Managed Memory

– Automatic hooks into OpenACC and OpenMP

runtimes so data is handled by CUDA & HIP

• Controlled by environment variables
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Readability

• Able to find the code

– Need a very good reason for > 1 level of abstraction

– Some code duplication is OK, it’s a balance

– Loops should live together, one after the other

• Comfortable syntax

– The syntax should be familiar, Fortran-like, and clear

– No “figuring out” what the code is doing (nothing “clever” or any such adjective)

– Hide metaprogramming, SFINAE, complex template expressions from the user

– Developer profanity should be minimized

• Looping should be clear

– Typically no need for C++ iterators

• Data structures should be clear (Multi-dimensional Arrays)
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Upwind Finite-Volume Spatial Discretization

• Finite-Volume Algorithm
• Solution is a set of non-overlapping cell averages

• Cell average updates based on cell-edge fluxes

• Use upwind Riemann solver to determine fluxes

• Reconstruct intra-cell variation from surrounding “stencil” of cells

• Advantages
• Conserves variables to machine precision

• Large time step

• Treats each Degree Of Freedom individually (accuracy)

• Unconditionally stable for Euler eqns without added dissipation
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Weighted Essentially Non-Oscillatory Limiting (WENO)

• WENO Algorithm
• Compute multiple polynomials using multiple stencils

• Weight the most oscillatory polynomials the lowest
• Custom low-dissipation implementation

• Advantages
• Requires no additional data when used with Finite-Volume
• Very accurate and effective at limiting oscillations

𝒑𝟏 𝒙

𝒑𝟐 𝒙

𝒑𝟑 𝒙

𝒑𝒉𝒊𝒈𝒉−𝒐𝒓𝒅𝒆𝒓 𝒙
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Other Advantages of Portable C++

• Debugging

– Fortran array metadata can change in routine interfaces (# of dimensions & sizes)

• Thus, Fortran index checking can never fully be trusted

– C++ Array class metadata is tied to the Array object and never changes

• C++ index checking is far more reliable because of this

– C++ exception throwing makes stack tracing more direct as well (e.g., in gdb)

• C++ compilers inline much better than Fortran compilers typically do

– Rarely any need for an equivalent of “!$acc routine” or “!$omp declare target”

– “!$acc routine” and OpenMP equivalent are typically quite buggy

• Simple C++ templating can significantly reduce code duplication

– No more complex Fortran interface blocks for multiple data types
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YAKL Fortran-Like Multi-Dimensional Arrays

• Use C++ “typedef” and “using” in a header to hide unsightly C++ 

namespace and template expressions
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YAKL Atomic

• Compute a column average:

Fortran

C++ Portability


